Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Allocation and remobilisation of nitrogen in spring oilseed rape (Brassica napus L. cv. Mozart) as affected by N supply and elevated CO2

Identifieur interne : 000098 ( PascalFrancis/Curation ); précédent : 000097; suivant : 000099

Allocation and remobilisation of nitrogen in spring oilseed rape (Brassica napus L. cv. Mozart) as affected by N supply and elevated CO2

Auteurs : J. Franzaring [Allemagne] ; G. Gensheimer [Allemagne] ; S. Weller [Allemagne] ; I. Schmid [Allemagne] ; A. Fangmeier [Allemagne]

Source :

RBID : Pascal:12-0275151

Descripteurs français

English descriptors

Abstract

CO2 enrichment interacts with the resource economy of plants, but time-integrated studies on N partitioning between different plant parts, C:N ratios and N remobilisation are mostly lacking. The present study addressed the nitrogen use efficiency (NUE) in spring oilseed rape (OSR) grown at three N fertilisation levels and two CO2 concentrations (380 vs. 550 μmol mol-1). N was supplied in three equal gifts at sowing, stem elongation and flowering. One of these gifts was labelled with 15NH415NO3 respectively. Six intermediate harvests and a final harvest were performed to determine dry mass, N concentrations. C:N, N recovery and δ15N signatures in the plant fractions root, main stem, branches, green and senescent leaves, pod walls and seeds. While N concentrations were lower and C:N higher in green leaves under CO2 enrichment, more N remained in the root until the final harvest. Under ambient CO2 concentrations the harvestable product (seeds) contained 50.7%. 44.5% and 41 % of the total N supplied in the treatments that received 75, 150 and 225 kg ha-1 N, respectively. Under elevated CO2 these values decreased to 47.4%, 34.5% and 15% reducing the NUE of the seeds by 2%, 33% and 65%, respectively. In CO2 exposed amply fertilised plants much of the N remained in the side stems due to strongoutbranching and reduced seed set. However, N remobilisation was more affected by the different N supply than by the CO2 enrichment. The boosted growth of OSR under high availability of disrupted the source :sink relationships so that benefits from the CO2 enrichment on stem and root growth could not be realised by yield formation.
pA  
A01 01  1    @0 0098-8472
A02 01      @0 EEBODM
A03   1    @0 Environ. exp. bot.
A05       @2 83
A08 01  1  ENG  @1 Allocation and remobilisation of nitrogen in spring oilseed rape (Brassica napus L. cv. Mozart) as affected by N supply and elevated CO2
A11 01  1    @1 FRANZARING (J.)
A11 02  1    @1 GENSHEIMER (G.)
A11 03  1    @1 WELLER (S.)
A11 04  1    @1 SCHMID (I.)
A11 05  1    @1 FANGMEIER (A.)
A14 01      @1 Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3 @2 70599 Stuttgart @3 DEU @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A20       @1 12-22
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 9462 @5 354000507981080020
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 12-0275151
A60       @1 P
A61       @0 A
A64 01  1    @0 Environmental and experimental botany
A66 01      @0 NLD
C01 01    ENG  @0 CO2 enrichment interacts with the resource economy of plants, but time-integrated studies on N partitioning between different plant parts, C:N ratios and N remobilisation are mostly lacking. The present study addressed the nitrogen use efficiency (NUE) in spring oilseed rape (OSR) grown at three N fertilisation levels and two CO2 concentrations (380 vs. 550 μmol mol-1). N was supplied in three equal gifts at sowing, stem elongation and flowering. One of these gifts was labelled with 15NH415NO3 respectively. Six intermediate harvests and a final harvest were performed to determine dry mass, N concentrations. C:N, N recovery and δ15N signatures in the plant fractions root, main stem, branches, green and senescent leaves, pod walls and seeds. While N concentrations were lower and C:N higher in green leaves under CO2 enrichment, more N remained in the root until the final harvest. Under ambient CO2 concentrations the harvestable product (seeds) contained 50.7%. 44.5% and 41 % of the total N supplied in the treatments that received 75, 150 and 225 kg ha-1 N, respectively. Under elevated CO2 these values decreased to 47.4%, 34.5% and 15% reducing the NUE of the seeds by 2%, 33% and 65%, respectively. In CO2 exposed amply fertilised plants much of the N remained in the side stems due to strongoutbranching and reduced seed set. However, N remobilisation was more affected by the different N supply than by the CO2 enrichment. The boosted growth of OSR under high availability of disrupted the source :sink relationships so that benefits from the CO2 enrichment on stem and root growth could not be realised by yield formation.
C02 01  X    @0 002A
C03 01  X  FRE  @0 Facteur influence @5 01
C03 01  X  ENG  @0 Influence factor @5 01
C03 01  X  SPA  @0 Factor influencia @5 01
C03 02  X  FRE  @0 Approvisionnement @5 02
C03 02  X  ENG  @0 Supply @5 02
C03 02  X  SPA  @0 Aprovisionamiento @5 02
C03 03  X  FRE  @0 Augmentation @5 03
C03 03  X  ENG  @0 Increase @5 03
C03 03  X  SPA  @0 Aumentación @5 03
C03 04  X  FRE  @0 Marquage isotopique @5 04
C03 04  X  ENG  @0 Isotope labelling @5 04
C03 04  X  SPA  @0 Marcación isotópica @5 04
C03 05  X  FRE  @0 Rapport carbone azote @5 05
C03 05  X  ENG  @0 Carbon nitrogen ratio @5 05
C03 05  X  SPA  @0 Relación carbono nitrógeno @5 05
C03 06  X  FRE  @0 Efficacité nutriment @5 06
C03 06  X  ENG  @0 Nutrient recovery @5 06
C03 06  X  SPA  @0 Eficacia nutrimento @5 06
C03 07  X  FRE  @0 Relation source puits @5 07
C03 07  X  ENG  @0 Source sink relationship @5 07
C03 07  X  SPA  @0 Relación fuente sumidero @5 07
C03 08  X  FRE  @0 Botanique @5 08
C03 08  X  ENG  @0 Botany @5 08
C03 08  X  SPA  @0 Botánica @5 08
C03 09  X  FRE  @0 Brassica napus var. oleifera @2 NS @5 10
C03 09  X  ENG  @0 Brassica napus var. oleifera @2 NS @5 10
C03 09  X  SPA  @0 Brassica napus var. oleifera @2 NS @5 10
C03 10  X  FRE  @0 Dioxyde de carbone @2 NK @2 FX @5 15
C03 10  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 15
C03 10  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 15
C03 11  X  FRE  @0 Remobilisation @4 CD @5 96
C03 11  X  ENG  @0 Remobilization @4 CD @5 96
C03 11  X  SPA  @0 Remobilización @4 CD @5 96
C03 12  X  FRE  @0 Azote 15 @4 CD @5 97
C03 12  X  ENG  @0 Nitrogen-15 @4 CD @5 97
C03 12  X  SPA  @0 Nitrógeno-15 @4 CD @5 97
C03 13  X  FRE  @0 Ecologie végétale @4 CD @5 98
C03 13  X  ENG  @0 Plant ecology @4 CD @5 98
C03 13  X  SPA  @0 Ecología vegetal @4 CD @5 98
C07 01  X  FRE  @0 Cruciferae @2 NS
C07 01  X  ENG  @0 Cruciferae @2 NS
C07 01  X  SPA  @0 Cruciferae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Plante oléagineuse @5 31
C07 05  X  ENG  @0 Oil plant (vegetal) @5 31
C07 05  X  SPA  @0 Planta oleaginosa @5 31
N21       @1 205
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0275151

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Allocation and remobilisation of nitrogen in spring oilseed rape (Brassica napus L. cv. Mozart) as affected by N supply and elevated CO
<sub>2</sub>
</title>
<author>
<name sortKey="Franzaring, J" sort="Franzaring, J" uniqKey="Franzaring J" first="J." last="Franzaring">J. Franzaring</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Gensheimer, G" sort="Gensheimer, G" uniqKey="Gensheimer G" first="G." last="Gensheimer">G. Gensheimer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Weller, S" sort="Weller, S" uniqKey="Weller S" first="S." last="Weller">S. Weller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Schmid, I" sort="Schmid, I" uniqKey="Schmid I" first="I." last="Schmid">I. Schmid</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Fangmeier, A" sort="Fangmeier, A" uniqKey="Fangmeier A" first="A." last="Fangmeier">A. Fangmeier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0275151</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0275151 INIST</idno>
<idno type="RBID">Pascal:12-0275151</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000042</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Allocation and remobilisation of nitrogen in spring oilseed rape (Brassica napus L. cv. Mozart) as affected by N supply and elevated CO
<sub>2</sub>
</title>
<author>
<name sortKey="Franzaring, J" sort="Franzaring, J" uniqKey="Franzaring J" first="J." last="Franzaring">J. Franzaring</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Gensheimer, G" sort="Gensheimer, G" uniqKey="Gensheimer G" first="G." last="Gensheimer">G. Gensheimer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Weller, S" sort="Weller, S" uniqKey="Weller S" first="S." last="Weller">S. Weller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Schmid, I" sort="Schmid, I" uniqKey="Schmid I" first="I." last="Schmid">I. Schmid</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Fangmeier, A" sort="Fangmeier, A" uniqKey="Fangmeier A" first="A." last="Fangmeier">A. Fangmeier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Environmental and experimental botany</title>
<title level="j" type="abbreviated">Environ. exp. bot.</title>
<idno type="ISSN">0098-8472</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Environmental and experimental botany</title>
<title level="j" type="abbreviated">Environ. exp. bot.</title>
<idno type="ISSN">0098-8472</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Botany</term>
<term>Brassica napus var. oleifera</term>
<term>Carbon dioxide</term>
<term>Carbon nitrogen ratio</term>
<term>Increase</term>
<term>Influence factor</term>
<term>Isotope labelling</term>
<term>Nitrogen-15</term>
<term>Nutrient recovery</term>
<term>Plant ecology</term>
<term>Remobilization</term>
<term>Source sink relationship</term>
<term>Supply</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Facteur influence</term>
<term>Approvisionnement</term>
<term>Augmentation</term>
<term>Marquage isotopique</term>
<term>Rapport carbone azote</term>
<term>Efficacité nutriment</term>
<term>Relation source puits</term>
<term>Botanique</term>
<term>Brassica napus var. oleifera</term>
<term>Dioxyde de carbone</term>
<term>Remobilisation</term>
<term>Azote 15</term>
<term>Ecologie végétale</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Approvisionnement</term>
<term>Botanique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">CO
<sub>2</sub>
enrichment interacts with the resource economy of plants, but time-integrated studies on N partitioning between different plant parts, C:N ratios and N remobilisation are mostly lacking. The present study addressed the nitrogen use efficiency (NUE) in spring oilseed rape (OSR) grown at three N fertilisation levels and two CO
<sub>2</sub>
concentrations (380 vs. 550 μmol mol
<sup>-1</sup>
). N was supplied in three equal gifts at sowing, stem elongation and flowering. One of these gifts was labelled with
<sup>15</sup>
NH
<sub>4</sub>
<sup>15</sup>
NO
<sub>3</sub>
respectively. Six intermediate harvests and a final harvest were performed to determine dry mass, N concentrations. C:N, N recovery and δ
<sup>15</sup>
N signatures in the plant fractions root, main stem, branches, green and senescent leaves, pod walls and seeds. While N concentrations were lower and C:N higher in green leaves under CO
<sub>2</sub>
enrichment, more N remained in the root until the final harvest. Under ambient CO
<sub>2</sub>
concentrations the harvestable product (seeds) contained 50.7%. 44.5% and 41 % of the total N supplied in the treatments that received 75, 150 and 225 kg ha
<sup>-1</sup>
N, respectively. Under elevated CO
<sub>2</sub>
these values decreased to 47.4%, 34.5% and 15% reducing the NUE of the seeds by 2%, 33% and 65%, respectively. In CO
<sub>2</sub>
exposed amply fertilised plants much of the N remained in the side stems due to strongoutbranching and reduced seed set. However, N remobilisation was more affected by the different N supply than by the CO
<sub>2</sub>
enrichment. The boosted growth of OSR under high availability of disrupted the source :sink relationships so that benefits from the CO
<sub>2</sub>
enrichment on stem and root growth could not be realised by yield formation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0098-8472</s0>
</fA01>
<fA02 i1="01">
<s0>EEBODM</s0>
</fA02>
<fA03 i2="1">
<s0>Environ. exp. bot.</s0>
</fA03>
<fA05>
<s2>83</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Allocation and remobilisation of nitrogen in spring oilseed rape (Brassica napus L. cv. Mozart) as affected by N supply and elevated CO
<sub>2</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FRANZARING (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GENSHEIMER (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WELLER (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHMID (I.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FANGMEIER (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>12-22</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9462</s2>
<s5>354000507981080020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0275151</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Environmental and experimental botany</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>CO
<sub>2</sub>
enrichment interacts with the resource economy of plants, but time-integrated studies on N partitioning between different plant parts, C:N ratios and N remobilisation are mostly lacking. The present study addressed the nitrogen use efficiency (NUE) in spring oilseed rape (OSR) grown at three N fertilisation levels and two CO
<sub>2</sub>
concentrations (380 vs. 550 μmol mol
<sup>-1</sup>
). N was supplied in three equal gifts at sowing, stem elongation and flowering. One of these gifts was labelled with
<sup>15</sup>
NH
<sub>4</sub>
<sup>15</sup>
NO
<sub>3</sub>
respectively. Six intermediate harvests and a final harvest were performed to determine dry mass, N concentrations. C:N, N recovery and δ
<sup>15</sup>
N signatures in the plant fractions root, main stem, branches, green and senescent leaves, pod walls and seeds. While N concentrations were lower and C:N higher in green leaves under CO
<sub>2</sub>
enrichment, more N remained in the root until the final harvest. Under ambient CO
<sub>2</sub>
concentrations the harvestable product (seeds) contained 50.7%. 44.5% and 41 % of the total N supplied in the treatments that received 75, 150 and 225 kg ha
<sup>-1</sup>
N, respectively. Under elevated CO
<sub>2</sub>
these values decreased to 47.4%, 34.5% and 15% reducing the NUE of the seeds by 2%, 33% and 65%, respectively. In CO
<sub>2</sub>
exposed amply fertilised plants much of the N remained in the side stems due to strongoutbranching and reduced seed set. However, N remobilisation was more affected by the different N supply than by the CO
<sub>2</sub>
enrichment. The boosted growth of OSR under high availability of disrupted the source :sink relationships so that benefits from the CO
<sub>2</sub>
enrichment on stem and root growth could not be realised by yield formation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Facteur influence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Influence factor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Factor influencia</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Approvisionnement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Supply</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Aprovisionamiento</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Augmentation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Increase</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Aumentación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Marquage isotopique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Isotope labelling</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Marcación isotópica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rapport carbone azote</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Carbon nitrogen ratio</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Relación carbono nitrógeno</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Efficacité nutriment</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nutrient recovery</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Eficacia nutrimento</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Relation source puits</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Source sink relationship</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Relación fuente sumidero</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Botanique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Botany</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Botánica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Remobilisation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Remobilization</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Remobilización</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Azote 15</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Nitrogen-15</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Nitrógeno-15</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ecologie végétale</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Plant ecology</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ecología vegetal</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Plante oléagineuse</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Oil plant (vegetal)</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Planta oleaginosa</s0>
<s5>31</s5>
</fC07>
<fN21>
<s1>205</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000098 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0275151
   |texte=   Allocation and remobilisation of nitrogen in spring oilseed rape (Brassica napus L. cv. Mozart) as affected by N supply and elevated CO2
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023